Automotive Assembly–Automated Guided Vehicles (AGVs) for Front End Assembly

Fori Germany recently supplied a custom designed AGV for an automotive manufacturer for their front end assembly project in Munich.

Features:

  • Guidance Technology: Optical
  • Capacity: 1,100 lbs./500 kg.
  • Safety: Safety scanners, e-stops
  • Controls: Siemens safety PLC, vehicle management system (VMS)
  • Keys to Success: Custom designed chassis, lithium ion battery, optical guidance
  • Results: Reduced infrastructure, increased flexibility

Fori Germany supplied 31 AGVs for a front end assembly line. The AGVS are used to transport the workpiece carriers that are mounted on the carrier plate of the AGV.

The total capacity required for each AGV was 1,100 pounds in order to support the pallet and associated product. The carrier plate used for locating the product was mounted onto a trunnion to provide better ergonomics and accessibility for the operator completing the assembly.

3

Each vehicle consisted of two fixed drive wheels, an integrated trunnion, and a 24 volt lithium ion battery to power the vehicle. The system was based on an open controls architecture, utilizing a Siemens PLC for the vehicle control.

Each vehicle utilizes a camera based guidance system that follows colored tape or paint. The optical guidance system provides a flexible, reliable and cost effective solution for guiding the vehicles throughout the assembly plant.

2

The system was supplied with a Siemens based Vehicle Management System (VMS) to schedule and coordinate vehicle moves, communicate with the plant and for monitoring of the vehicles.

For more information about Fori Automations’ AGVs, please visit our website.

Automotive Welding System–Front Sub Frame MIG Welding/Projection Welding Systems

Fori Mexico provided a robotic MIG and projection welding system for a sub frame line for an automotive manufacturer.

Features:

  • Assembly Cycle Time: 54 seconds
  • Keys to Success: Integrated robots and custom designed turn tables, custom precision welding
  • Results: Decreased cycle time, increased quality

 

The front sub-frame line has a total capacity of 292,000 units with a cycle time of 54 seconds. The assembly consists of MIG welding, projection welding and clinch studs.  Fori processed this with dial tables mounted to the customer’s base system for ease of installation.

weld2

The assembly line consists of 22 MIG welding robots and ten material handling robots.  MIG welding is the main process completed, but the line also has Vitronic cameras to scan welds for quality control, post welding pierce stations, and machining centers for key attachment points and a map vision system to verify dimensional accuracy.

weld

Fori USA was responsible for project management and engineering for the program.  Fori Mexico was responsible for building the line, debug and run off on their floor. The robotic welding system proved to be a successful collaboration between Fori USA and Fori Mexico. The ability to support the setup, buyoff and installation near the customer plant was of great value to the end user.

For more information about Fori Automation’s welding systems, please visit our website.

 

Aerospace Assembly–Automated Guided Vehicles (AGVs) for Wing Assembly

Fori provided six high capacity Aerospace AGVs for the automated transport of tooling for stringer assembly, supporting the wing assembly.

Features:

  • Guidance Technology: Magnetic bar, inertial with pencil magnets, natural feature, laser contour
  • Capacity: 40,000 lbs./54,545 kg.
  • Safety: Safety scanners and bumpers, Siemens safety PLC, system interlocks
  • Controls: Siemens open architecture, vehicle management system
  • Results: Improved flexibility, decreased crane usage
  • Solutions: Vehicle synchronization, auto-leveling, vehicle management system

The six high capacity AGVs, capable of auto-leveling and synchronized transport of tooling up to 40,000 pounds have been designed to accommodate projected wing production. The AGV system is required to be synchronized during the lift of the tooling and product, as well as synchronization of the three AGVs during transport. The system includes an auto-leveling feature that dynamically levels the tooling during travel to ensure a level plane is maintained during transport between stations. The Fori AGVs will be the primary method of transporting the tooling and product through the assembly process.  Traditional assembly systems rely heavily on overhead crane utilization, whereas the AGV based solution eliminates the reliance on cranes.

Boeing - CWC - Stringer AGV - 4

The AGVs were developed to support the customer’s lean automated manufacturing methodology. The goal of the project was to automate the entire material handling process for the assembly of the stringers (specifically the load and unload of the autoclaves used for curing the composite wing stringers). The loading of the autoclave is completed utilizing a natural feature guidance system. Then the AGV uses the walls of the loaded autoclave for the guidance in and out, while still maintaining +/- 5mm accuracy.

The design intent was to build a vehicle that was modular and interchangeable. The AGV system is required to transport many tools of different lengths and weights. The AGV system needs to be able to accommodate synchronization of up to three AGVs during the lift and transport from assembly stations.

Boeing - CWC - Stringer AGV - 1

Each of the AGVs is outfitted with two servo based lifters and a laser alignment system which provides measurement feedback to the onboard PLC for the dynamic leveling of the tooling during transport. The system must maintain levelness within +/- 1/8” from each end of the tool.

A Fori Vehicle Management System (VMS) has been provided to monitor system I/O, communication between the AGVs, tooling and automated assembly stations. Scheduling of moves also occurs at the Fori VMS.

For more information about Fori Automation’s Aerospace AGV products, please visit our website.

 

Automotive Assembly Systems–Assembly Line for Rear Suspension Modules

Fori supplied a rear module suspension assembly line utilizing Fori Rail Guided Carts (RGC) as a conveyance and assembly method alongside two fully automatic drive-thru module alignment systems.

Features:

  • Assembly Jobs Per Hour: 45 jobs
  • Keys to Success: RGC conveyance, drive through alignment
  • Results: High build efficiency
  • Solutions: Pallet error proofing
IMG_7987
Drive-thru Suspension Module Aligner for Automotive Assembly

The assembly line consisted of (22) RGCs, two drive-thru aligners, (16) operators and various torque tools. The product for the rear suspension module varied between all-wheel drive and rear wheel drive vehicle variations. The build pallet on top of each RGC accommodated those variants and manipulated the ride height setting of the five link suspension by manually setting the ride height wheel in the correct position verified by a switch on the pallet.

A drive-thru aligner was also utilized within the system to help streamline the process. A lift and locate unit was located in each drive-thru aligner that would pick the pallet from the RGC and accurately present the suspension assembly for alignment.

Utilizing Fori’s RGCs allowed for a timelier changeover. The RGC system also provided long term flexibility supporting:

  • Accommodating future product changes that could add new stations.
  • Production increases that can affect station to station cycle times.
  • Production line shape if required.
IMG_8587
Fori Rail Guided Carts (RGC) with Custom Tooling Pallet

For more information about Fori Automation’s RGCs and assembly systems, please visit our website.

 

Tuggers – Automated Guided Vehicles (AGVs) for Product Delivery

Fori has further improved on its standard Tugger AGV design by doubling the overall towing capacity.

Features:

  • Guidance Technology: Inertial with pencil magnets, bi-directional, capable of 0 degree turn
  • Capacity: 35,000 lbs./15,909 kg.
  • Safety: Scanners and bumpers
  • Controls: Siemens Open Architecture
  • Keys to Success: Highly accurate and repeatable
  • Results: Increased production rate, reduced personnel injuries, decreased infrastructure

1

Fori was enlisted to supply a derivative of the standard Tugger AGV product line that is capable of nearly double the capacity of the original design. The driver of this increase was the goal of being able to transport three carts carrying axle assemblies for a large automotive OEM.

Due to the capacity, more product was transferred during each move which further increased the return on investment while decreasing the total number of required vehicles. The Tugger AGVs were commissioned to replace non-value added material handling tasks within the assembly process. The most important process consideration was safety and reliable delivery of product.

2

Integration of a Fori Vehicle Management System (VMS) introduced further improvements to safety and reliability. Vehicle scheduling of moves, tracking and traffic control is coordinated through the Fori VMS. The Fori Tugger is a proven and robust product that can be applied to a variety of material handling applications.

For more information about Fori’s Tuggers and other material handling systems, please visit our website.

 

Automated Guided Vehicles (AGVs) – Tunnel AGVs for Pallet Transfer

Fori recently designed and built a Tunnel AGV to support its global customers. The Tunnel AGVs are utilized for transporting product and dunnage throughout the production process.

1
The Tunnel AGV pictures includes a Roller Conveyor companion cart for Pallet Transfer.

Features:

  • Guidance Technology: Magnetic bar, inertial with pencil magnets
  • Capacity: Up to 10,000 lbs./4,545 kg. (can be increased upon request)
  • Safety: Safety scanners and bumpers, Siemens safety PLC, system interlocks
  • Controls: Siemens open architecture, vehicle management system
  • Keys to Success: Custom designed chassis, highly accurate and repeatable
  • Results: Improved flexibility

The Fori Tunnel AGVs are capable of automated docking and transport of companion carts carrying up to 10,000 pounds. The design intent was to build a vehicle that was modular and interchangeable. In order to increase process flexibility the Tunnel AGVs are capable of docking to various companion carts, each serving a unique purpose.

Applications include pallet transfer via roller conveyors, lift tables and powered trunnions. Automated docking to the companion carts is completed with two docking or hitch pins. The docking pins ensure proper alignment to the companion cart for repeatable pick and drop.

The Tunnel AGV was designed to provide a high capacity material handling solution in the smallest footprint possible. The vehicle is comprised of two fixed drive wheels allowing for bi-directional travel and zero turn capability.

Fori - Tunnel AGV 3

A Fori Vehicle Management System (VMS) is utilized for scheduling of vehicles and traffic management of the system. The vehicle controls are based on an open architecture utilizing a Siemens safety PLC, eliminating the black box technology that is commonly used across the industry. The Tunnel AGV has proven to be a cost effective and reliable material handling system for a variety of applications.

For more information on Fori’s automated material handling products, please visit our website.

 

Automated Guided Vehicles (AGVs) for Horizontal Wing Assembly

Fori recently provided six high capacity Aerospace Tugger AGVs for the automated transport of tooling, supporting the horizontal build line for wing assembly. 

Features:

  • Guidance Technology: Magnetic bar, inertial with pencil magnets, natural feature and laser contour
  • Capacity: 120,000 lbs./54,545 kg.
  • Safety: Safety scanners and bumpers, Siemens safety PLC, system interlocks
  • Controls: Siemens open architecture, vehicle management system (VMS)
  • Keys to Success: Vehicle synchronization, custom designed chassis, highly accurate and repeatable.
  • Results: Improved flexibility, decreased crane usage

The six high capacity Tugger AGVs (capable of automated docking and transport of tooling up to 120,000 pounds) have been designed to accommodate projected production. The AGVs will be the primary method of transporting the tooling and product through the assembly process.

3

The AGVs were developed to support a lean automated manufacturing methodology. The design intent was to build a vehicle that was modular and interchangeable. The AGV system is required to transport nine different tools, all with different weights and footprints. Due to tools exceeding lengths of 100 feet, the AGVs are required to dock at each end of the tool and move in tandem.

The automated docking utilizes a natural feature and camera based guidance system, which accommodates unexpected movement of the tooling. The system measures the surface of the tooling to generate angular offsets and utilizes a SICK camera and reflector based system for final location. Once positioned, servo driven couplers automatically pin spring loaded receivers mounted to the tooling. The tooling is also outfitted with safety scanners powered and controlled by the AGV.

1

Responsibilities of the AGVs include: automated docking, tooling identification and transport throughout the facility. A Fori Vehicle Management System (VMS) has been provided to monitor system I/O, communication between the AGVs, tooling, and automated assembly stations. Scheduling of moves also occurs between the vehicle Siemens Mobile Panel and the Fori VMS.

For more information about Fori Automation’s aerospace products, please visit our website.

 

Automated Guided Vehicles (AGVs) for Aluminum Ingot & Coil Handling

Fori recently supplied three high capacity AGVs for the automated transport of aluminum ingots for aluminum coil production. 

IMG_5960

Features:

  • Guidance Technology: Magnetic bar, inertial with pencil magnets
  • Capacity: 250,000 lbs./113,636 kg.
  • Safety: Safety scanners and bumpers, Siemens safety PLC, system interlocks
  • Controls: Siemens open architecture, vehicle management system
  • Keys to Success: Custom designed chassis, highly accurate and repeatable
  • Results: Improved flexibility, decreased crane usage

The (3) high capacity automated guided vehicles (AGVs) were supplied to replace a legacy system that was over 20 years old. The Fori AGVs will be the primary method of transporting the aluminum ingots through the finishing process. Traditional handling systems rely heavily on overhead crane utilization, but the AGV based solution reduces reliance on cranes.

The AGVs were designed to fit within the existing plant and process. One of the biggest challenges on the project was packaging eight drive wheels and (2) 100 ton capacity lifts within the existing vehicle footprint. Each drive wheel was outfitted with a suspension system to ensure proper radial loading and equal load distribution between the (8) drive wheels. Another improvement on the Fori system was ball screw based lift jacks that included integrated load cells for measuring fore/aft and side to side loading of the ingot. If the ingot is loaded outside of an acceptable range, the AGV stops immediately and sets down the ingot.

IMG_4035

The Fori AGV utilizes a 72VDC sealed lead acid battery as a power supply.  The vehicles utilize PMAC motors that provide improved control and efficiency over the previous system which utilized DC brushed motors. Each vehicle had a safety bumper front and rear, as well as six safety scanners around the perimeter of the vehicle to provide added safety coverage.

A Fori Vehicle Management System has been provided to monitor system I/O, manage communication between the AGVs and scheduling of moves for production.

For more information about Fori Automation’s high capacity AGV capabilities, please visit our website.

 

 

Automated Guided Vehicles for Robotic Drill & Fill System

Fori recently provided two high capacity Aerospace AGVs for the automated transport of a mobile robotic drill and fill system.

Mobile Robot for Automated Drill & Fill
Image Source

Features:

  • Guidance Technology: Magnetic bar, natural feature/laser contour
  • Capacity: 40,000 lbs./18,181 kg.
  • Safety: Safety scanners and bumpers, Siemens safety PLC, system interlocks
  • Controls: Siemens open architecture
  • Keys to Success: Custom designed chassis, highly accurate and repeatable
  • Results: Improved flexibility

The two high capacity AGVs (transporting mobile robotic platforms with weights up to 40,000 pounds) have been designed to accommodate projected production. The Fori AGVs will be the primary method of transporting the mobile robots between each of the necessary drilling stations.

The AGVs were developed to increase system automation, flexibility, and remove the traditional monuments that are generally required for automated drilling applications. The design intent was to build a vehicle that was modular and interchangeable. The AGVs were designed to accommodate multiple mobile robots, the software is modular, and simplifies the communication between the Fori AGV and mobile robot.

EI - Midbody AGV (15604) - 1

The Fori AGV is required to locate within +/- 5mm to an existing fuselage transporter. The Fori system utilizes a natural feature and camera based guidance system, which accommodates unexpected location of the transporter. The Fori system overcomes the variability of the fuselage transporters accuracy by measuring the surface of the transporter to generate angular offsets and utilizes a SICK camera and reflector based system for final location. Once positioned, the mobile robot automatically docks to the transporter for power, communication, and pneumatics.

Automated movement is handled through the tethered Siemens Mobil Panel. The operators are able to select drill positions on either the Fori HMI or robot HMI. Once selected the Fori AGV is responsible for safely and accurately lifting and transporting the two mobile robots between 16 different drill positions.

For more information about our drilling platform AGVs, please visit our website.

 

Automated Guided Vehicles (AGVs) for Composite Wing Assembly

 Fori recently provided seven high capacity Aerospace AGVs for the automated transport of tooling for spar assembly, supporting the production of composite wing assemblies. 

1

Features:

  • Guidance Technology: Magnetic bar, inertial with pencil magnets, natural feature/laser contour
  • Capacity: 120,000 lbs./54,545 kg.
  • Safety: Safety scanners and bumpers, Siemens safety PLC, system interlocks
  • Controls: Siemens open architecture, vehicle management system
  • Keys to Success: Vehicle synchronization, custom designed chassis, and highly accurate and repeatable.
  • ResultsImproved flexibility and decreased crane usage

The seven high capacity AGVs, capable of auto-leveling and synchronized transport of tooling up to 120,000 pounds have been designed to accommodate projected wing production. The Fori AGVs will be the primary method of transporting the tooling and product through the assembly process.  Traditional assembly systems rely heavily on overhead crane utilization, the AGV based solution eliminates the reliance on cranes.

The AGVs were developed to support a lean, automated manufacturing methodology. The goal of the project was to automate the entire material handling process for the assembly of the spars. Notably, the load and unload of the autoclaves used for curing the composite wing spars. The loading of the autoclave is completed utilizing a natural feature guidance system, the AGV uses the walls of the autoclave for the guidance in and out, while still maintaining +/- five mm accuracy.

The design intent was to build a vehicle that was modular and interchangeable. The AGV system is required to transport many tools of different lengths and weights. The AGV system needs to be able to accommodate synchronization of up to three AGVs during the lift and transport from assembly stations.

Each of the AGVs is outfitted with four servo based lifters and a laser alignment system which provides measurement feedback to the on-board PLC for the dynamic leveling of the tooling during transport. The system must maintain levelness within +/- 1/8” from each end of the tool.

A Fori Vehicle Management System has been provided to monitor system I/O, communication between the AGVs, tooling and automated assembly stations. Scheduling of moves also occurs at the Fori VMS.

2

For more information about Fori Automation’s aerospace assembly products, please visit our website.